Improving Cotton Production Efficiency With Phosphorus and Potassium Placement At Multiple Depths in Strip Tillage Systems

Hunter Frame

Assistant Professor/Field Crops Agronomist, Virginia Tech Tidewater Agricultural Research and Extension Center Suffolk, VA

Austin Brown

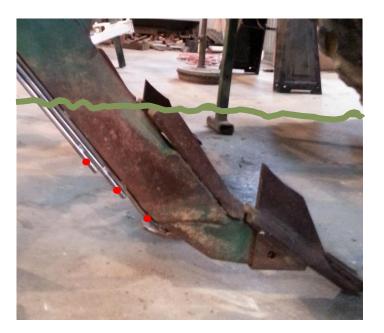
MS Student, Virginia Tech

Blacksburg, VA

Research Objectives

- 1. Determine the impact on early season development of upland cotton (*Gossypium hirsutum*) through first square, nutrient status throughout the bloom period, and lint yield and quality of placing a fluid P & K fertilizer at multiple depths below the seed during strip-till cultivation.
- 2. Evaluate selected combinations of P and K placed at multiple depths in the strip-till process in combination with 2x2 banding of P and K solutions at planting on early season development through first square, nutrient status throughout the bloom period, and lint yield and quality.

Two Locations:


Suffolk, VA (TAREC)Lewiston, NC

□Fertilizer Placement

Deep Placement with Striptillage

≻6, 9, and 12 in. below the row
≻1-2 weeks prior to planting
≻2 X 2 Band at Planting

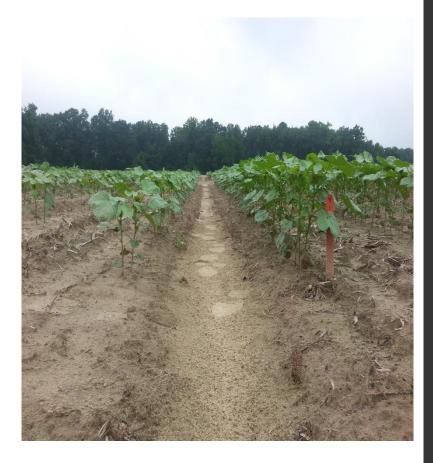
□ Fluid Fertilizer Sources

- ≻Ammonium Polyphosphate (10-34-0)
- \geq Potassium thiosulfate (0-0-25-17S)
- ➢ Soil Test Recommendations (100%):
 - $\succ 40$ lbs. $\mathrm{P}_2\mathrm{O}_5~\mathrm{ac}^{\text{-}1}$
 - > 40 lbs. K₂O ac⁻¹

Granular Fertilizer Sources

- Diammonium phosphate (18-46-0)Potassium Chloride (0-0-60)
- All preplant nitrogen and sulfur were balanced among treatments
 > Urea Ammonium nitrate (30-0-0)
 > Ammonium thiosulfate (12-0-0-26S)
 > 35 lbs N ac⁻¹ and 41 lbs. S ac⁻¹

Treatment List


Trt	Placement	Description
1	Unfertilized Control	No P or K Fertilization
2	Broadcast Agronomic Control	P + K Broadcast – Soil test recommendation
3	Liquid Starter Agronomic Control	112 kg /ha of 10-34-0 in 2X2 band + K broadcast
4	2 X 2 Band	50%P + 50%K
5	2 X 2 Band	$100\%P + 100\%K^{\P}$
6	2 X 2 Band	150%P + 150%K
7	Deep Placement	50%P + 50%K
8	Deep Placement	100%P + 100%K
9	Deep Placement	150%P + 150%K
10	2 X 2 + Deep Placement	(80%P + 80% K) + (20%P + 20%K)
11	2 X 2 + Deep Placement	(60%P + 60% K) + (40%P + 40%K)
12	2 X 2 + Deep Placement	(40%P + 40% K) + (60%P + 60%K)
13	2 X 2 + Deep Placement	(20%P + 20% K) + (80%P + 80%K)

¶ 100% rate equals 40 lbs. P₂O₅ and 40 lbs. K₂O per hectare based on soil test recommendations for producing cotton in Virginia

□Treatment were applied to 4 row plots ≻Row spacing = 3 ft.

>Plot length = 40 ft

 In-season Plant Measurements
 Plant Population
 Plant Height (until 1st flower)
 Total Nodes (from 1st square)
 Nodes Above White Flower (NAWF)

□Petiole and Tissue Sampling

- ▶1st through 9th week of bloom petiole sampling
- $>4^{\rm th}$ leaf down the main stem
- > 24 petioles per plot from the 1st and 4th rows
- Petioles immediately detached from leaf
- Petioles analyzed for nitrate-N, phosphorus, potassium, and sulfur
- Leaf samples taken during 1st and 5th week of bloom
 - Complete nutrient analysis for leaf samples

□Lint Yield and Quality

- Cotton harvested with two row cotton picker from center two rows
- ≻Lint will be ginned on 10 saw micro-gin for % lint
- ≻Lint will be sent to USDA for HVI analyses on lint quality

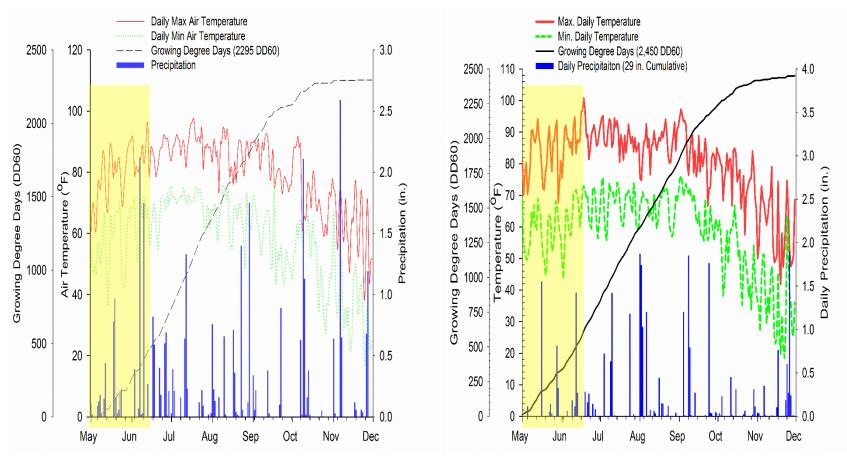
Unfertilized Check

40 lbs. $P_2O_5 ac^{-1}$ 40 lbs. $K_2O ac^{-1}$

Statistical Design and Analysis

Randomized Complete Block Design

- >4 replications of each treatment
- >Analysis of variance was conducted at the $\alpha = 0.05$
 - > Nutrient management systems tested at 40 lbs P_2O_5 and 40 lbs K_2O per acre as single factors
 - Placement and rate analyzed as 2 X 3 factorial
 - Combination placement treatments tested as single factors (Data not shown)
 - > Tukey-Kramer HSD used for mean separation at $\alpha = 0.05$



Mehlich I Soil Test Results for 2014 Locations

Depth	TAF	TAREC		iston				
inches	P	K	Р	K				
		p	om					
0-3	39 (H)¶	106 (H)	15 (M+)	81 (M+)				
3-6	26 (H-)	98 (H-)	12 (M)	60 (M)				
6-9	17 (M+)	76 (M+)	9 (M-)	48 (M-)				
9-12	7 (M-)	101 (H-)	3 (L)	42 (M-)				
¶ Indicates the soil test level based on Virginia's soil test								
calibration								

Weather Data for TAREC

2013

⁸ in. rainfall from May 1 – June 15

5 in. rainfall from May 1 – June 15

2014

Nutrient Management Systems and Early Season Growth (TAREC) in 2013

Nutrient Systems	Plant Height (in.)						
	4-Jun	13-Jun	20-Jun	26-Jun	3-Jul	10-Jul	
Unfertilized Check	4.8	$7.4~\mathrm{c}^{*}$	9.4 c	13.2 d	18.0 c	22.0 b	
Broadcast Control	4.8	8.5 ab	10.5 bc	15.4 c	$22.4 \mathrm{b}$	29.6 a	
Starter Control	5.0	9.6 a	11.1 ab	17.8 ab	24.1 ab	31.4 a	
2 x 2 Band (100%)	5.2	9.4 ab	12.1 a	18.6 a	25.9 a	32.0 a	
Deep Placement (100%)	4.9	8.7 ab	11.3 ab	16.9 bc	$23.9 \mathrm{b}$	30.9 a	

* Values with the same letter are not significantly different at α = 0.05

Nutrient Management Systems and Early Season Growth in 2014

TAREC

Nutrient Systems	Plant Height						
	3-Jun	12-Jun	19-Jun	26-Jun	2-Jul	11-Jul	
	in						
Unfertilized Check	3.3 b*	5.8 b	10.0 c	14.6 b	19.3 c	23.7 с	
Broadcast Control	3.6 ab	7.0 ab	10.3 bc	17.7 a	$23.2 \mathrm{b}$	$29.2 \mathrm{b}$	
Starter Control	3.6 ab	7.6 a	12.0 ab	19.3 a	$24.4 \mathrm{~ab}$	30.0 ab	
2 x 2 Band (100%)	3.8 a	7.6 a	12.5 a	19.5 a	$24.6 \mathrm{~ab}$	30.6 a	
Deep Placement (100%)	3.6 ab	7.4 a	12.3 a	19.5 a	24.8 a	30.8 a	

*Values with the same letter are not significantly different at α = 0.05

Nutrient Systems	Plant Height							
	10-Jun	17-Jun	24-Jun	1-Jul	8-Jul	15-Jul		
			ir	1				
Unfertilized Check	3.5 b	6.6 b	10.4 b	$15.2 \mathrm{~b}$	20.0 b	28.1 b		
Broadcast Control	4.1 a	7.5 a	12.1 a	17.8 a	23.2 a	31.9 a		
Starter Control	4.2 a	7.7 a	12.0 a	18.4 a	23.6 a	32.1 a		
2 x 2 Band (100%)	4.1 ab	7.4 ab	11.1 ab	17.4 a	23.6 a	31.9 a		
Deep Placement (100%)	4.0 ab	7.8 a	12.1 a	18.5 a	24.1 a	33.3 a		

Lewiston

*Values with the same letter are not significantly different at $\alpha = 0.05$

Total Nodes and NAWF at TAREC for Nutrient Management Systems in 2013

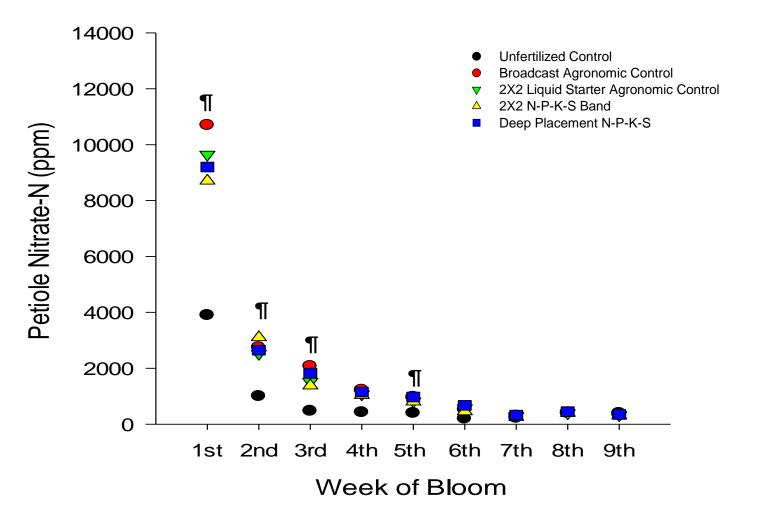
Nutrient Systems	Total	Nodes	Node	Nodes Above White Flower (NAWF)			
	3-Jul	11-Jul	17-Jul	23-Jul	30-Jul	7-Aug	
Unfertilized Check	$9.8~\mathrm{b}^{*}$	10.1 b	6.6 b	4.8 b	$3.2 \mathrm{b}$	1.8 b	
Broadcast Control	10.5 ab	11.7 a	7.7 a	6.3 a	4.5 a	$2.6 \mathrm{~ab}$	
Starter Control	11.1 a	11.9 a	7.3 a	5.8 a	4.0 ab	$2.3 \mathrm{~ab}$	
2 x 2 Band (100%)	11.5 a	11.6 a	7.4 a	5.8 a	$4.2 \mathrm{~ab}$	2.8 a	
Deep Placement (100%)	11.2 a	11.4 a	7.9 a	6.0 a	4.1 ab	3.0 a	

* Values with the same letter are not significantly different at α = 0.05

Total Nodes, Vigor, NDVI, and NAWF at TAREC for Nutrient Management Systems in 2014

TAREC

Nutrient Systems	Vigor	NDVI	Nodes	NAWF		
	18	Jun	16-Jul	16-Jul	22-Jul	31-Jul
Unfertilized Check	$2.75 { m b}^{*}$	0.36 c	10.4 b	5.5	4.1 b	$2.5~{ m c}$
Broadcast Control	4.25 a	0.44 bc	11.5 ab	6.1	5.3 a	4.0 a
Starter Control	4.50 a	0.48 ab	11.9 a	6.1	5.0 ab	3.3 b
2 x 2 Band (100%)	5.25 a	0.55 a	11.6 a	6.3	5.3 a	3.7 ab
Deep Placement (100%)	4.50 a	$0.45~\mathrm{abc}$	11.9 a	6.3	5.4 a	3.4 ab

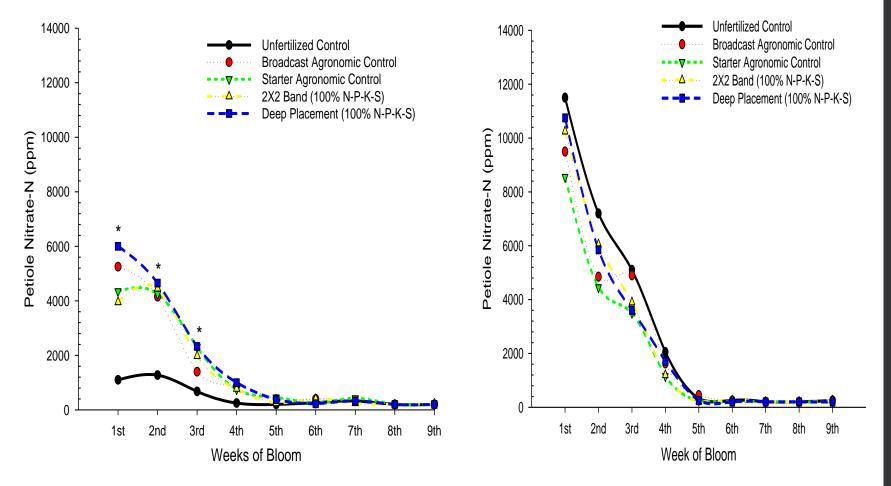

*Values with the same letter are not significantly different at α =0.05

		00011				
Nutrient Systems	Nodes	NAWF				
	22-Jul	22-Jul	29-Jul	5-Aug	12-Aug	
Unfertilized Check	12.4	7.5	7.0 a	5.7	4.5	
Broadcast Control	12.3	7.5	6.6 ab	5.3	4.3	
Starter Control	13.1	7.3	6.4 b	5.1	3.8	
2 x 2 Band (100%)	12.2	7.3	6.7 ab	5.1	4.5	
Deep Placement (100%)	12.8	7.3	6.8 ab	5.2	4.4	

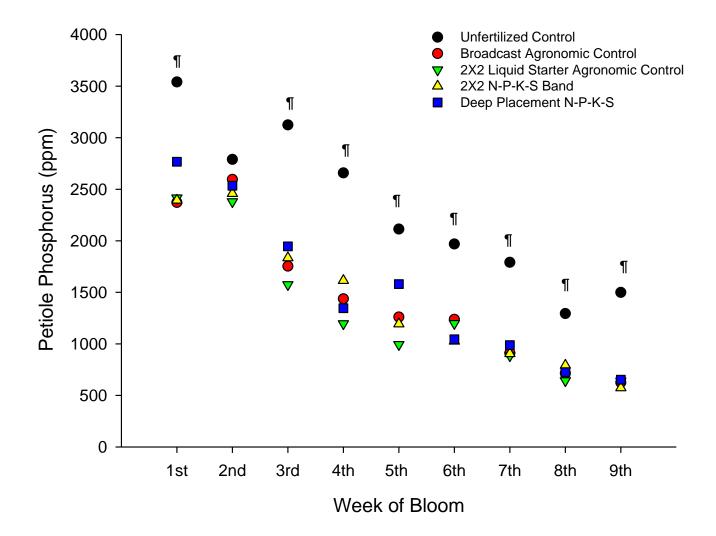
Lewiston

*Values with the same letter are not significantly different at α =0.05

Petiole Nitrate-N Concentrations During Bloom Period (TAREC) in 2013



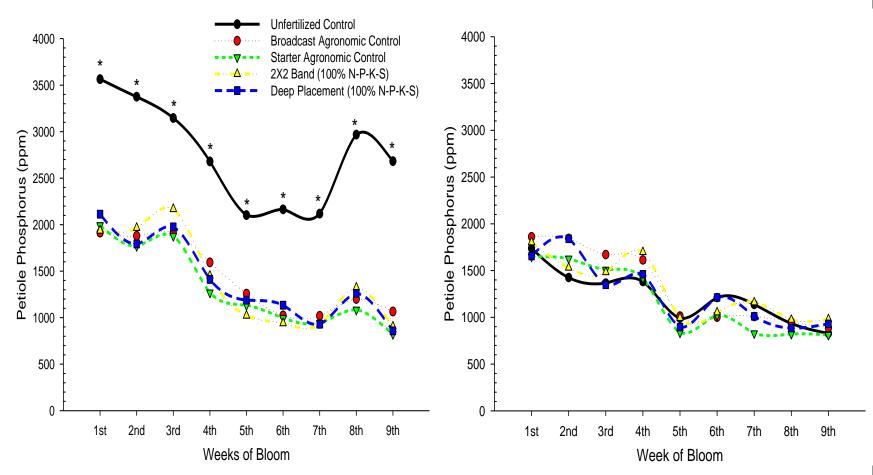
¶ Atleast two treatments are significantly different at $\alpha = 0.1$


Petiole Nitrate-N Concentrations During Bloom Period in 2014

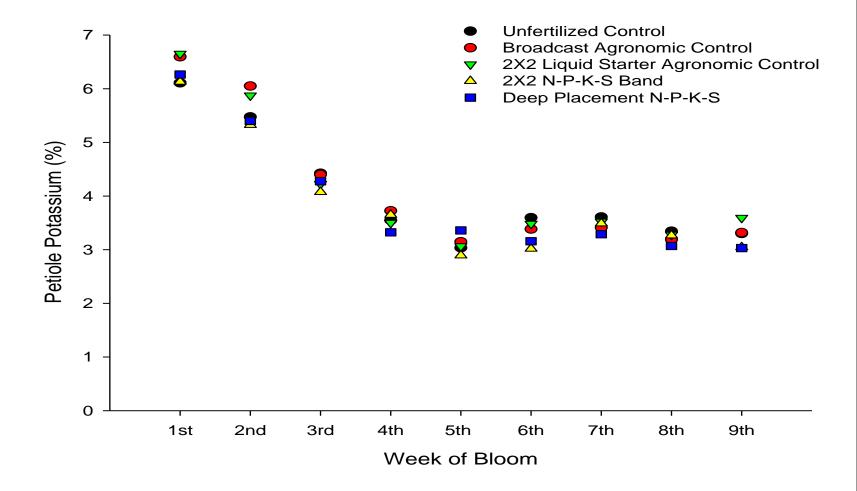
Lewiston

TAREC

Petiole Phosphorus Concentrations During Bloom Period (TAREC) in 2013

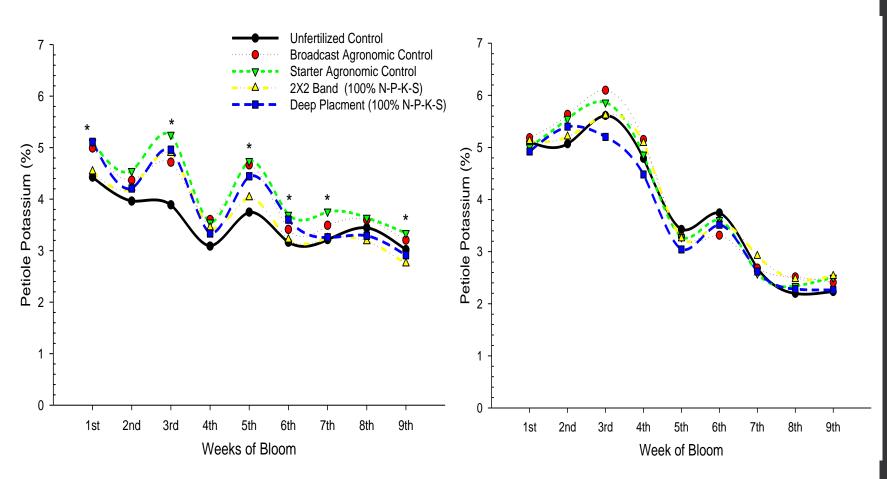


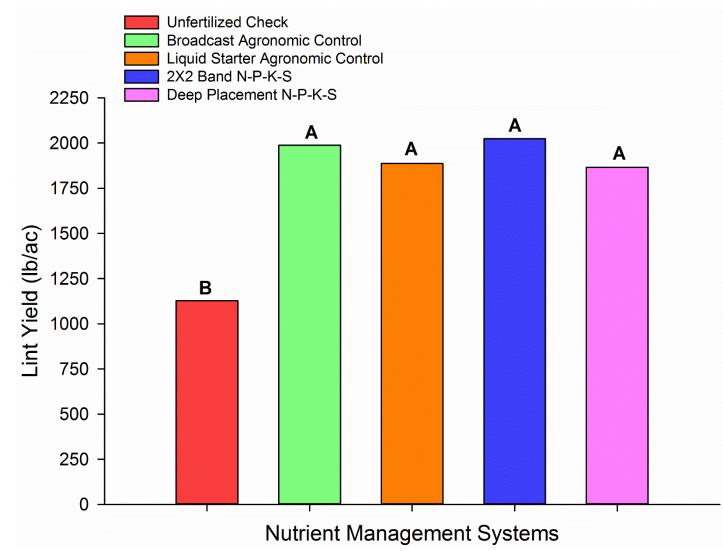
 \P Atleast two treatments are significantly different at α = 0.1


Petiole Phosphorus Concentrations During Bloom Period in 2014

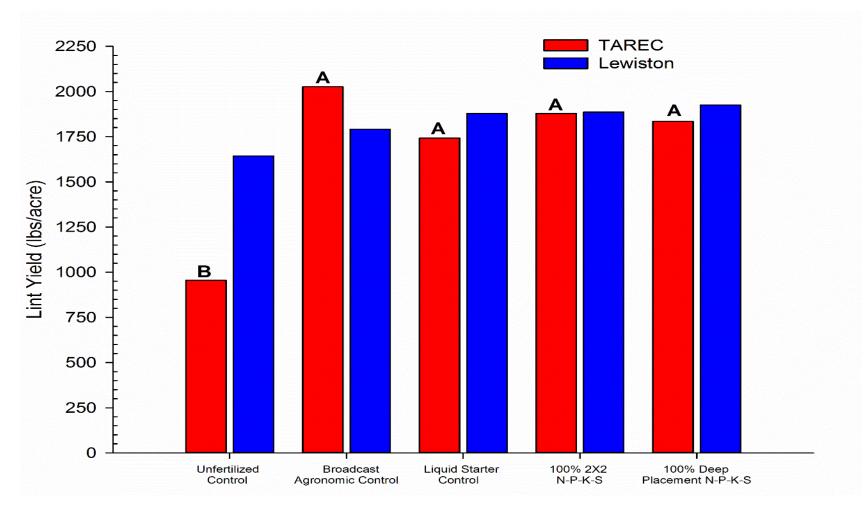
TAREC

Lewiston


Petiole Potassium Concentrations During Bloom Period (TAREC) in 2013

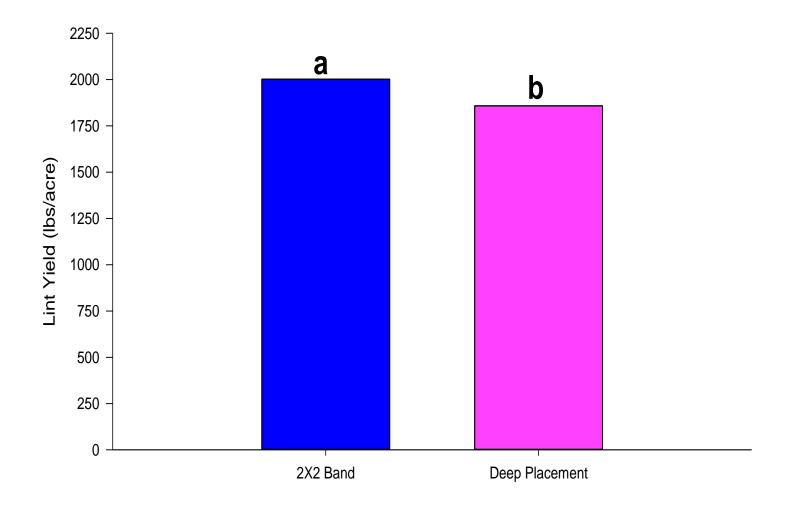

Petiole Nitrate-N Concentrations During Bloom Period in 2014

TAREC

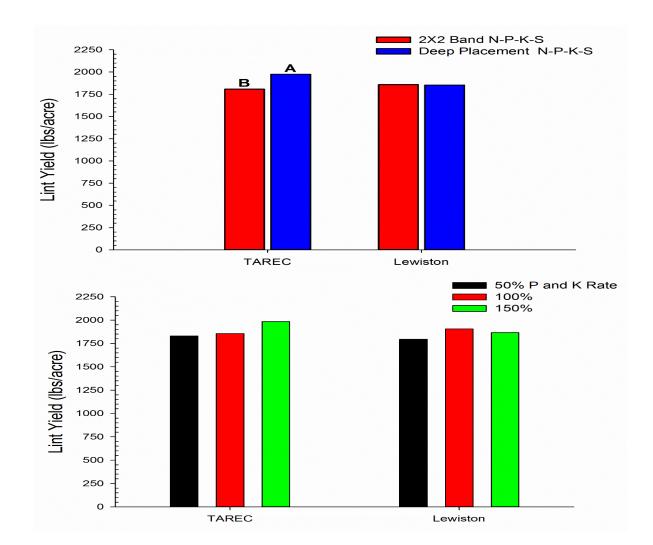

Lewiston

Lint Yield and Nutrient Management Systems (TAREC) in 2013

Nutrient Management Systems and Lint Yield in 2014



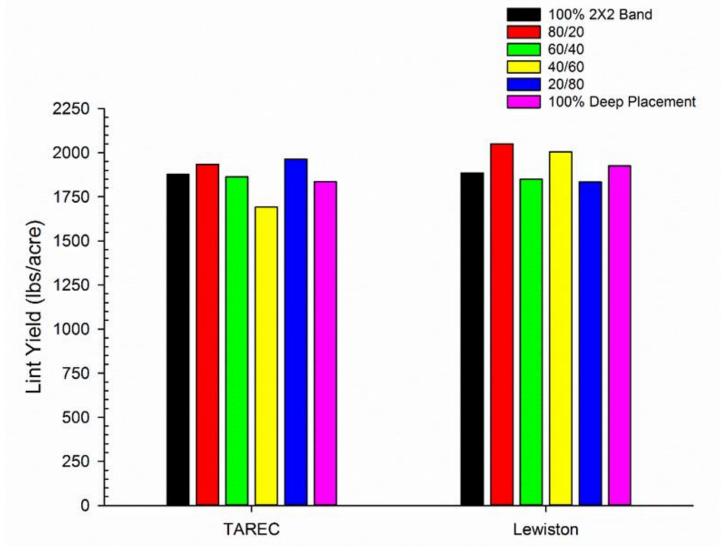
Early Season Plant Height and P and K Application Rates at TAREC in 2014


P and K Rate	Plant Height							
%¶	3-Jun	12-Jun	19-Jun	26-Jun	2-Jul	11-Jul		
				in				
50	3.5 b*	7.6 b	12.2 b	19.0 b	24.2 b	30.5		
100	3.7 ab	$7.5 \mathrm{b}$	12.4 b	19.4 ab	24.6 ab	30.7		
150	3.8 a	8.3 a	13.1 a	20.4 a	25.4 a	31.2		

*Values with the same letter are not significantly different at $\alpha = 0.05$ "Percent of recommended P and K (40 lbs P_2O_5 /acre and 40 lbs. K_2O per acre)

Lint Yield and Placement (TAREC) in 2013

P and K Rate and Placement Effect on Lint Yield in 2014



2x2 Band and Deep Placement Combinations on Early Plant Height (TAREC) in 2014

Placement Combinations	Plant Height							
% / %	3-Jun	12-Jun	19-Jun	26-Jun	2-Jul	11-Jul		
			ii	n				
100 / 0	3.8	7.6	12.5	19.5	24.6	30.6		
80 / 20	3.7	7.8	12.6	19.9	24.5	30.6		
60 / 40	3.6	7.3	12.4	19.2	23.2	29.5		
40 / 60	3.5	8.0	12.8	19.5	24.8	31.6		
20 / 80	3.7	7.5	12.2	20.0	24.5	30.2		
0 / 100	3.6	7.4	12.3	19.5	24.8	30.8		

† Combinations of deep placement and 2X2 band of the P and K applied at the 100% (40lbs /acre) rate

2x2 Band and Deep Placement Combinations on Lint Yield (TAREC) in 2014

2014 Summary

Early season growth is very important in Virginia cotton production as weather can be variable during May

□Cool Temperatures

□Heavy Rainfall Events

 \Box 2013 and 2014 seasons contrasting in early climatic conditions

□Major response in plant heights, nodes, NAWF an yield can be mainly attributed to nitrogen fertilization

□Nitrogen deficiency increased phosphorus concentrations in cotton petioles throughout the bloom period

>When petiole sampling is used in cotton, N status will be important when making decisions about in-season phosphorus management

Petiole phosphorus and potassium concentrations decrease linearly throughout the bloom period regardless of fertilizer nutrient management systems

Summary (cont.)

□All nutrient management systems produced similar lint yields when P and K were applied at the soil test recommended rates at all site years during the study

- □Responses in early season plant growth, nodes, NAWF and petiole P and K levels were limited and inconsistent when evaluating P and K rates and placement
- □2X2 Band produced significantly higher lint yield than the deep placement at TAREC when analyzed over rates and placement in 2013
- Deep placement producer higher lint yields than the 2X2 banding at planting at the TAREC location in 2014
 Most likely due to warmer/drier early season and promoted optimum root development
- □ Both locations during 2014 had increased yields above the 50% P and K rate indicating a moderate response to P and K fertilization

Acknowledgements

- □Fluid Fertilizer Foundation
- □Water's Agricultural Laboratories, Inc.
- □Tessenderlo Kerley, Inc.
- □Keith Edmisten, NC Cotton Specialist
- □Tommy Corbett, Peanut Belt Research Station, NC (Lewiston, NC)
- □Gail White, Research Specialist, VA Tech
- David Horton, Research Specialist, VA Tech

Questions?